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ABSTRACT
In modern scientific research, data are often collected from multiple modalities. Since different modalities
could provide complementary information, statistical prediction methods using multimodality data could
deliver better prediction performance than using single modality data. However, one special challenge for
using multimodality data is related to block-missing data. In practice, due to dropouts or the high cost of
measures, the observations of a certain modality can be missing completely for some subjects. In this paper,
we propose a new direct sparse regression procedure using covariance from multimodality data (DISCOM).
Our proposed DISCOM method includes two steps to find the optimal linear prediction of a continuous
response variable using block-missing multimodality predictors. In the first step, rather than deleting or
imputing missing data, we make use of all available information to estimate the covariance matrix of the
predictors and the cross-covariance vector between the predictors and the response variable. The proposed
new estimate of the covariance matrix is a linear combination of the identity matrix, the estimates of the
intra-modality covariance matrix and the cross-modality covariance matrix. Flexible estimates for both the
sub-Gaussian and heavy-tailed cases are considered. In the second step, based on the estimated covariance
matrix and the estimated cross-covariance vector, an extended Lasso-type estimator is used to deliver
a sparse estimate of the coefficients in the optimal linear prediction. The number of samples that are
effectively used by DISCOM is the minimum number of samples with available observations from two
modalities, which can be much larger than the number of samples with complete observations from all
modalities. The effectiveness of the proposed method is demonstrated by theoretical studies, simulated
examples, and a real application from the Alzheimer’s Disease Neuroimaging Initiative. The comparison
between DISCOM and some existing methods also indicates the advantages of our proposed method.
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1. Introduction

With the advance of modern scientific research, complex data
are often collected from multiple modalities (sources or types).
In neuroscience, different brain images such as magnetic reso-
nance imaging (MRI) and positron emission tomography (PET)
are used to study the brain structure and function. In biology,
data from different modalities such as gene expressions and
copy numbers are collected to understand the complex mech-
anism of cancers. Since different modalities could provide com-
plementary information, statistical prediction methods using
multimodality data could deliver better prediction performance
than using single modality data. However, one special challenge
for using multi-modality data is related to missing data, which
is unavoidable due to some reasons such as the high cost of
measures or the patients’ dropout. Generally, the observations of
a certain modality can be missing completely, that is, a complete
block of the data is missing. One example of block-missing
multi-modality data is shown in Figure 1. In this example, there

CONTACT Dinggang Shen dinggang_shen@med.unc.edu Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Department of Brain and
Cognitive Engineering, Korea University, Seoul, Korea; Yufeng Liu yfliu@email.unc.edu Department of Statistics and Operations Research, Department of Genetics,
Department of Biostatistics, Carolina Center for Genome Science, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/r/JASA.

are n samples (each row represents one sample), three modalities
and one response variable. The blank regions with question
mark indicate missing data. As shown in Figure 1, for many
samples, the observations from some modality are missing com-
pletely. The number of samples with complete observations is
much smaller than the sample size n.

To predict the response variable using the high-dimensional
block-missing multimodality data, a common strategy is to use
the Lasso (Tibshirani 1996) or some other penalized regression
methods (e.g., Fan and Li 2001; Zou and Hastie 2005; Zhang
2010) only for the data with complete observations. However,
this strategy can greatly reduce the sample size and waste a lot
of useful information in the samples with missing data. Another
strategy is to impute the missing data first by some existing
imputation methods (Hastie et al. 1999; Cai et al. 2010). These
methods can be effective when the positions of the missing
data are random, but they can be unstable when a complete
block of the data is missing. Recently, motivated by applications
in genomic data integration, Cai et al. (2016) proposed a new
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Figure 1. An illustration of block-missing multimodality data with three modalities.

framework of structured matrix completion to impute block-
missing data. However, they only consider the case when the
data are collected from two modalities. In the literature, rather
than deleting or imputing missing data, some studies focus
on using all available information. For example, Yuan et al.
(2012) proposed the incomplete multisource feature learning
(IMSF) method. The IMSF method performs regression on
block-missing multimodality data without imputing missing
data. It formulates the prediction problem as a multitask learn-
ing problem by first decomposing the prediction problem into
a set of regression tasks, one for each combination of available
modalities (e.g., modalities 1, 2, and 3; modalities 1 and 2;
modalities 1 and 3; and modalities 2 and 3 for the example
shown in Figure 1), and then building regression models for
all tasks simultaneously. The important assumption in the IMSF
method is that all models involving a specific modality share the
common set of predictors for that particular modality. However,
when different modalities are highly correlated, this assumption
could be too strong. In that case, for some modalities, it can
be more reasonable to choose different predictor subsets for
different involved tasks. Therefore, it is desirable to develop
flexible and efficient prediction methods applicable to block-
missing multi-modality data.

In this article, we propose a new direct sparse regression pro-
cedure using covariance from multimodality data (DISCOM).
For each sample, if some modality has missing entries, all the
observations from that modality are missing simultaneously.
Regardless of the underlying true model, we aim to find the
optimal linear prediction for the response variable using the
block-missing multi-modality data without imputing the miss-
ing data. Our method includes two steps. In the first step, we use
all available information to estimate the covariance matrix of the
predictors and the cross-covariance vector between the predic-
tors and the response variable. The proposed new estimate of the
covariance matrix is a linear combination of the identity matrix,
the estimates of the intra-modality covariance matrix and the
cross-modality covariance matrix. Flexible estimates for both
the sub-Gaussian and heavy-tailed cases are considered. Many
existing high-dimensional covariance estimation methods such
as Bickel and Levina (2008), Cai and Liu (2011), Rothman
(2012), Lounici et al. (2014), and Cai and Zhang (2016) can be
used in this step. In the second step, based on the estimated
covariance matrix and the estimated cross-covariance vector, we

use an extended Lasso-type estimator to estimate the coefficients
in the optimal linear prediction.

Note that there are some existing sparse regression methods
in the literature using the estimation of the covariance
matrix. For example, Jeng and Daye (2011) proposed the
covariance-thresholded Lasso for complete data to improve
variable selection by using the sparsity of the covariance
matrix. Loh and Wainwright (2012) and Datta et al. (2017)
proposed new estimators for the high dimensional regres-
sion with corrupted predictors, where all entries of the
design matrix are assumed to be noisy or missing ran-
domly and independently. The missing data problem they
considered can be viewed as a special case of the block-
missing multimodality data where each modality has only
one predictor. To the best of our knowledge, there are
no existing methods using a similar idea to DISCOM tai-
lored for high-dimensional block-missing multimodality
data. To investigate DISCOM, we have carefully studied its
theoretical and numerical performance. For both the sub-
Gaussian and heavy-tailed cases, we establish the consistency
of estimation and model selection for the optimal linear
predictor regardless of the underlying true model. Our
theoretical studies indicate that DISCOM could make use of
all available information of the block-missing multi-modality
data effectively. The number of samples that are effectively
used by DISCOM is the minimum number of samples with
available observations from two modalities, which can be
much larger than the number of samples with complete
observations from all modalities. The comparison between
DISCOM and some existing methods using simulated data
and Alzheimer’s Disease Neuroimaging Initiative (ADNI)
data (www.loni.ucla.edu/ADNI) further demonstrate the
effectiveness of our proposed method.

The rest of this article is organized as follows. In Section 2, we
motivate and introduce our method. In Section 3, we show some
theoretical results about the estimates of the covariance matrix,
the cross-covariance vector and the coefficients in the optimal
linear prediction for both the sub-Gaussian and heavy-tailed
cases. The results about the model selection consistency are also
provided. In Sections 4 and 5, we demonstrate the performance
of our method on the simulated data and the ADNI dataset. We
conclude this article in Section 6 and provide all technical proofs
in the appendix.
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2. Motivation and Methodology

We first show the motivation and the outline of our proposed
method in Section 2.1. In Section 2.2, we introduce the proposed
estimate of the covariance matrix of the predictors, and the esti-
mate of the cross-covariance vector between the predictors and
the response variable using the block-missing multi-modality
data. In Section 2.3, we introduce Huber’s M-estimate for the
heavy-tailed case. In Section 2.4, we provide the estimation
procedure for the coefficients in the optimal linear prediction.

The following notation will be used in this article. For a
matrix A ∈ Rm×n, we use ‖A‖F , ‖A‖max, and ‖A‖∞ to denote
the Frobenius norm

√∑
ij a2

ij, the max norm maxij |aij|, and the
infinity norm maxi

∑n
j=1 |aij|, respectively. For a vector b ∈

Rm×1, we use ‖b‖2, ‖b‖max, and ‖b‖1 to denote the �2 norm√∑
i b2

i , the max norm maxi |bi|, and the �1 norm
∑n

i=1 |bi|,
respectively. In addition, we use sign(·) to denote the function
that maps a positive entry to 1, a negative entry to −1, and 0 to 0.

2.1. Motivation

Suppose the predictors are collected from K modalities. For
k ∈ {1, 2, . . . , K}, there are pk predictors from the k-th modality.
Let n denote the sample size, Y = (y1, y2, . . . , yn)T denote the
n × 1 response vector centered to have mean 0, and X(k) ∈
Rn×pk denote the design matrix of the pk predictors from the
kth modality. In addition, let X = (X(1), X(2), . . . , X(K)) =
(x1, x2, . . . , xn)T denote the n × p design matrix, where p =
p1 + p2 + · · · + pK . We assume that xi’s are iid. generated from
some multivariate distribution with mean 0p×1 and covariance
matrix �. We use C = cov(xi, yi) = (c1, c2, . . . , cp)T ∈ Rp to
denote the cross-covariance vector between xi and yi.

To predict the response variable y using all predictors
X1, X2, . . . , Xp, we consider the optimal linear predictor ŷ =∑p

j=1 Xjβ
0
j , where the coefficient vector

β0 = (β0
1 , β0

2 , . . . , β0
p )T

= arg min
β

E

⎡
⎣

⎛
⎝y −

p∑
j=1

Xjβj

⎞
⎠2⎤⎦ = �−1C. (1)

The above coefficient vector β0 can be viewed as the solution to
the following optimization problem:

min
β

1
2
βT�β − CTβ .

If we know the true covariance matrix � and the true cross-
covariance vector C, and assume that β0 is sparse, we can
estimate β0 by solving the following optimization problem:

min
β

1
2
βT�β − CTβ + λ‖β‖1, (2)

where λ is a nonnegative tuning parameter.
Motivated by (2), for the high-dimensional block-missing

multimodality data, we propose a new method with two steps.
In the first step, we use all available observations to estimate
the covariance matrix � and the cross-covariance vector C. The

estimates of � and C are denoted as �̂ and Ĉ, respectively.
This step is very important to make full use of the block-
missing multimodality data. In the second step, we estimate β0

by solving the following optimization problem:

min
β

1
2
βT�̂β − ĈTβ + λ‖β‖1. (3)

2.2. Standard Estimates of � and C

Considering block-missing multimodality data, for each sam-
ple, if a certain modality has missing entries, all the observations
from that modality are missing. For each predictor j, define
Sj = {i : xij is not missing}. For each pair of predictors j and
t, define Sjt = {i : xij and xit are not missing}. The number of
elements in Sj and Sjt are denoted as nj and njt , respectively.

For the missing data mechanism, we only need to assume
that for each predictor, the first sample moment and the second
sample moment using all available observations are unbiased
estimators of the first theoretical moment and the second the-
oretical moment of the distribution, respectively. This assump-
tion is satisfied if we assume that each modality is missing
completely at random. However, different predictors in the same
modality are missing simultaneously. Under this assumption,
for each j ∈ {1, 2, . . . , p}, the available observations of the jth
predictor are centered to have mean 0. A natural initial unbiased
estimate of � using all available data is the sample covariance
matrix

�̃ = (σ̃jt)j,t=1,2,...,p, where σ̃jt = 1
njt

∑
i∈Sjt

xijxit .

For the block-missing multi-modality data, the above initial
estimate �̃ may have negative eigenvalues due to the unequal
sample sizes njt ’s. Therefore, it is not a good estimate of the
covariance matrix � and not suitable to be used in (3) directly.
It is important to find an estimator that is both positive semidef-
inite and more accurate than the initial estimate �̃.

According to the partition of the predictors into K modali-
ties, the initial estimate of the covariance matrix �̃ can be parti-
tioned into K2 blocks, denoted by �̃jt ’s, where j, t ∈ {1, 2, . . . , p}
and �̃jt is a pj × pt matrix. We denote

�̃I =

⎛
⎜⎜⎝

�̃11
�̃22 . . .

�̃KK

⎞
⎟⎟⎠ ,

�̃C =

⎛
⎜⎜⎜⎝

0 �̃12 . . . �̃1K
�̃21 0 . . . �̃2K

...
... . . .

...
�̃K1 �̃K2 . . . 0

⎞
⎟⎟⎟⎠ ,

where �̃I is called the intra-modality sample covariance matrix
which is a p × p block-diagonal matrix containing K main
diagonal blocks of �̃, and �̃C = �̃ − �̃I is called the
cross-modality sample covariance matrix containing all the
off-diagonal blocks of �̃. We also let �I and �C denote the
true intra-modality covariance matrix and cross-modality
covariance matrix, respectively. As shown in Figure 1, since
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the observations of some modalities are missing completely for
many samples, there are more available samples to estimate the
intra-modality covariance matrix �I than the cross-modality
covariance matrix �C. Intuitively, it is relatively easier to
estimate �I than �C. In view of this characteristic of the
block-missing multi-modality data and the possible negative
eigenvalues of �̃, we propose to use the following estimator:

�̂ = α1�̃I + α2�̃C + α3Ip,

where α1, α2 and α3 are three nonrandom weights, and Ip is a p×
p identity matrix. Considering all possible linear combinations,
we can find the optimal linear combination �̃∗ = α∗

1 �̃I +
α∗

2 �̃C + α∗
3 Ip whose expected quadratic loss E[‖�̃∗ − �‖2

F] is
the minimum. The optimal weights α∗

1 , α∗
2 and α∗

3 are shown in
the following Proposition 1. As a remark, Proposition 1 and all
the theoretical analysis in Section 3 are conditional on the given
missing pattern of different modalities.

Proposition 1. Consider the following optimization problem:

min
α1,α2,α3

E[‖�̂ − �‖2
F] subject to �̂ = α1�̃I + α2�̃C + α3Ip,

where the weights α1, α2 and α3 are nonrandom. Denote γ ∗ =
tr(�)/p, δ2

I = E[‖�̃I − �I‖2
F], δ2

C = E[‖�̃C − �C‖2
F], and

θ2 = ‖γ ∗Ip − �I‖2
F . The optimal weights are

α∗
1 = θ2

θ2 + δ2
I

∈ [0, 1], α∗
2 = ‖�C‖2

F
‖�C‖2

F + δ2
C

∈ [0, 1],

α∗
3 = γ ∗(1 − α∗

1 ).

In addition, we have

E[‖�̃∗ − �‖2
F] = δ2

I θ
2

δ2
I + θ2 + δ2

C‖�C‖2
F

δ2
C + ‖�C‖2

F
≤ δ2

I + δ2
C

= E[‖�̃ − �‖2
F].

Proposition 1 shows that �̃∗ is more accurate than �̃. The
relative improvement in the expected quadratic loss over the
sample covariance matrix is equal to

E[‖�̃ − �‖2
F] − E[‖�̃∗ − �‖2

F]
E[‖�̃ − �‖2

F] = δ2
I

δ2
I + δ2

C
· (1 − α∗

1 )

+ δ2
C

δ2
I + δ2

C
· (1 − α∗

2 ).

Therefore, if �̃I is relatively accurate (δ2
I is small), the optimal

weight α∗
1 = θ2

θ2+δ2
I

should be large and the percentage of the rel-
ative improvement tends to be small. We can also make the same
conclusions about �̃C. For the block-missing multi-modality
data, due to the unequal sample sizes, the initial estimate �̃I
can be relatively accurate while the estimate �̃C is relatively
inaccurate. It’s reasonable to use different weights for �̃I and �̃C.
As a remark, Proposition 1 can be viewed as a generalization
of Theorem 2.1 shown in Ledoit and Wolf (2004), where they
studied the optimal linear combination of the sample covariance
matrix and the identity matrix to estimate the covariance matrix
for the complete data.

Regarding the cross-covariance vector C, we can use the
following estimate

C̃ = (c̃1, c̃2, · · · , c̃p)
T , where c̃j = 1

nj

∑
i∈Sj

yixij.

Note that we use all available information to estimate � and
C. The theoretical properties of �̃ and C̃ will be discussed in
Section 3.

2.3. Robust Estimates of � and C

When the predictors and the response variable follow a sub-
Gaussian distribution with an exponential tail, �̃∗ and C̃ intro-
duced in Section 2.2 generally perform well. However, when
the distributions of the predictors and the response variable
are heavy-tailed, �̃∗ and C̃ may have poor performance, and
therefore some robust estimates of � and C are required.

In this section, we introduce robust estimates of � and
C based on Huber’s M-estimator (Huber (1964)). In general,
suppose Z1, Z2, . . . , Zn are iid copies of a random variable Z with
mean μ. Huber’s M-estimator of μ is defined as the solution to
the following equation:

n∑
i=1

ψH(Zi − μ) = 0,

where ψH(·) is the Huber function which is given by

ψH(z) =
{

z if |z| ≤ H,
H · sign(z) otherwise.

Using Huber’s M-estimator, for the block-missing multimodal-
ity data, we can construct a robust initial estimate of � denoted
by

�̆ = (σ̆jt)j,t=1,2,...,p, where σ̆jt

= the solution to
∑
i∈Sjt

ψHjt (xijxit − μ) = 0.

In general, the parameters Hjt used in the Huber function can
be chosen to be 1.345 in order to guarantee 95% efficiency
relative to the sample mean if the data-generating distribution
is Gaussian (Huber (1964)). However, for the block-missing
multi-modality data, considering different numbers of samples
available to estimate different entries of �, we propose to use
different values of H flexibly. The choice of Hjt will be discussed
in Section 3. Based on the robust initial estimate �̆, we can
use a similar idea introduced in Section 2.2 to find the optimal
linear combination �̆∗ = α∗

1 �̆I +α∗
2 �̆C +α∗

3 Ip whose expected
quadratic loss E[‖�̆∗ −�‖2

F] is the minimum. Similarly, we can
use Huber’s M-estimator to deliver a robust estimate of C which
is defined as

C̆ = (c̆1, c̆2, · · · , c̆p)
T , where c̆j

= the solution to
∑
i∈Sj

ψHj(xijyi − μ) = 0.

Here, we also propose to use different values of H when estimat-
ing different cj’s. The choice of Hj will be discussed in Section 3.
The theoretical properties of �̆ and C̆ will be also shown in that
section.
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2.4. Estimate of β0 in the Optimal Linear Prediction

After getting an initial estimate of � and C, for example, �̃ and
C̃ (or �̆ and C̆), our proposed DISCOM method estimates β0

by solving the following optimization problem:

min
β

1
2
βT

[
α1�̃I + α2�̃C + (1 − α1)

tr(�̃)

p
Ip

]

β − C̃Tβ + λ‖β‖1, (4)

where α1 ∈ [0, 1], α2 ∈ [0, 1] are two weights and tr(�̃)/p is
used to estimate γ ∗. In practice, both α1 ∈ [0, 1], α2 ∈ [0, 1],
and λ can be chosen by cross-validation or an additional tuning
dataset. To guarantee that the estimated covariance matrix �̂ =
α1�̃I + α2�̃C + (1 − α1)

tr(�̃)
p Ip is positive semidefinite, we

need to choose reasonable α1 and α2 from the set {(α1, α2) :
α1 ∈ [0, 1], α2 ∈ [0, 1], and λmin(�̂) ≥ 0}, where λmin(�̂) is
the smallest eigenvalue of �̂.

Besides the above tuning parameter selection method that
searches for the best values of three parameters, we can use an
efficient tuning method incorporating our theoretical results
in Section 3. Our theoretical studies show that the tuning
parameters α1 and α2 should satisfy the conditions 1 − α1 =
O(

√
(log p)/ minj nj) and 1 − α2 = O(

√
(log p)/ minj,t njt),

respectively. Denote m1 = √
(log p)/ minj nj and m2 =√

(log p)/ minj,t njt . We can choose α1 = 1 − k0m1 and
α2 = 1 − k0m2, where k0 ∈ [kmin, kmax] is a tuning parameter.
To guarantee that both α1 and α2 are nonnegative, we set kmax =
min{1/m1, 1/m2}. In addition, a reasonable value of k0 should
satisfy the following two conditions: (1) α1 = 1 − k0m1 ≤ 1
and α2 = 1 − k0m2 ≤ 1; (2) the estimate of the covariance
matrix �̂ is positive semidefinite. The first condition requires
that k0 ≥ 0. If the smallest eigenvalue of the initial estimate
�̃, denoted by λmin(�̃), is nonnegative, we can show that �̂ is
positive semidefinite for any nonnegative k0. If λmin(�̃) < 0,
since the smallest eigenvalue of �̂ satisfies

λmin(�̂) ≥ λmin(�̃) + k0 ·
[
λmin

(
(m2 − m1)�̃I

+m1
tr(�̃)

p
Ip

)
− m2λmin(�̃)

]
,

to guarantee that �̂ is positive semidefinite, we only need to
require that

k0 ≥ −λmin(�̃)/

[
−m2 · λmin(�̃)

+λmin

(
(m2 − m1)�̃I + m1

tr(�̃)

p
Ip

)]
.

Therefore, if λmin(�̃) ≥ 0, we choose kmin = 0. Otherwise, we
choose

kmin = −λmin(�̃)/

[
−m2 · λmin(�̃)

+λmin

(
(m2 − m1)�̃I + m1

tr(�̃)

p
Ip

)]
.

For the block-missing multimodality data, since m2 ≥ m1 > 0,
we know that the matrix (m2 − m1)�̃I + m1

tr(�̃)
p Ip is pos-

itive definite and therefore kmin is always less than kmax =
min{1/m1, 1/m2} = 1/m2.

By choosing α1 = 1−k0m1 and α2 = 1−k0m2, our proposed
fast tuning parameter selection method searches the best value
of k0 ∈ [kmin, kmax] and the parameter λ rather than searching
three parameters α1, α2 and λ. In addition, instead of using the
eigendecomposition for each parameter combination to check
whether �̂ is positive semidefinite, this method only requires
two eigendecompositions of the matrices �̃ and (m2 −m1)�̃I +
m1

tr(�̃)
p Ip before the tuning parameter selection process. For

each k0 ∈ [kmin, kmax], we can incorporate the coordinate
descent algorithm (Friedman et al. 2010) on a grid of λ values,
from the largest one down to the smallest one, using warm starts.
Alternatively, since �̂ is positive semidefinite, we can use the
LARS algorithm shown in Jeng and Daye (2011) to compute the
solution path.

As many existing high-dimensional linear regression studies
for the random design, we use the assumption E(X) = 0 to make
our presentation more convenient. Our proposed DISCOM
method can be used for the general case where E(X) �= 0. In that
case, we first center the available observations of each predictor
and use X̄1, X̄2, . . . , X̄p to denote the sample means of those p
predictors. We also center the observed responses and use Ȳ to
denote the sample mean of the response variable. Let β̂ denote
the estimated regression coefficient vector calculated from the
centered data. Our final predictive model is Ȳ + ∑p

j=1(X∗
j −

X̄j)β̂j, where (X∗
1 , X∗

2 , . . . , X∗
p ) is a test data point. In practice,

if our data are collected at various time points by different
laboratories using multiple platforms, the iid assumption may be
violated due to batch-effects. In that case, we suggest to use some
existing statistical methods (e.g., the exploBATCH R package)
to diagnose, quantify and correct batch effects before using our
proposed DISCOM method.

3. Theoretical Study

Without loss of generalization, we assume that the true variances
of all predictors, σ11, σ22, . . . , σpp, are equal to 1 in our theo-
retical studies. For each j ∈ {1, 2, . . . , p}, we assume that the
observations of the predictor j are scaled such that

∑
i∈Sj x2

ij =
nj. In that case, we have σ̃jj = 1. For Huber’s M-estimator
�̆, we redefine σ̆jj to be 1 for each j. Let β̃ and β̆ denote the
solutions to (4) using the sample covariance and Huber’s M-
estimator, respectively. We assume that β0 is sparse and denote
J = {j : β0

j �= 0} as the index set of the important predictors.
Denote s = |J| as the number of important predictors. Let
β0

max = maxj∈J |β0
j | and β0

min = minj∈J |β0
j |. In Sections 3.1

and 3.2, we will discuss the theoretical properties in the sub-
Gaussian case and the heavy-tailed case, respectively. The model
selection consistency of our proposed method will be shown in
Section 3.3.

3.1. Sub-Gaussian Case

The following conditions are considered in this section:



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1411

(A1) Suppose that there exists a constant L > 0 such that

E(exp(tXj)) ≤ exp
(

L2t2

2

)
for all j ∈ {1, 2, . . . , p} and t ∈ R,

E(exp(ty)) ≤ exp
(

L2t2

2

)
for all t ∈ R.

(A2) Suppose that the true covariance matrix � satisfies the
following restricted eigenvalue (RE) condition:

min
δ∈{u∈Rp:‖uJc ‖1≤7‖uJ‖1}

δT�δ

δTδ
≥ m > 0.

Under condition (A1), the predictors and the response variable
follow sub-Gaussian distributions with exponentially bounded
tails. In this case, we propose to use �̃ and C̃ shown in Sec-
tion 2.2 as the initial estimate of the covariance matrix � and the
cross-covariance vector C, respectively. The RE condition (A2)
is often used to obtain bounds of statistical error of the Lasso
estimate (Datta et al. 2017). The following Theorem 1 shows the
large deviation bounds of �̃ and C̃.

Theorem 1. Under condition (A1), if minj,t njt ≥ 6 log p, there
exists two positive constants ν1 = 8

√
6(1 + 4L2) and ν2 = 4

such that

max
j,t

P

(
|σ̃jt − σjt| ≥ ν1

√
log p
njt

)
≤ ν2

p3 ,

P

(
‖�̃ − �‖max ≥ ν1

√
log p

minj,t njt

)
≤ ν2

p
.

There exists another two positive constants ν3 = 16(1 +
4 L2

min{var(y),1} ) max{var(y), 1} and ν4 = 4 such that

max
j

P

(
|c̃j − cj| ≥ ν3

√
log p

nj

)
≤ ν4

p2 ,

P

(
‖C̃ − C‖max ≥ ν3

√
log p

minj nj

)
≤ ν4

p
.

Remark 1. In our theoretical studies, we assume that the dimen-
sion p goes to infinity as the sample size minj,t njt increases. If
we further assume that (log p)/ minj,t njt = o(1), the condition
minj,t njt > 6 log p is satisfied if the sample size minj,t njt is
sufficiently large. Then, Theorem 1 shows that ‖�̃ − �‖max =
Op(

√
(log p)/ minj,t njt). The performance of �̃ depends on

the worst case when there are only minj,t njt samples to esti-
mate some entries in �. In addition, the convergence rate of
‖C̃ − C‖max is Op(

√
(log p)/ minj nj)). The performance of C̃

also depends on the worst case when there are only minj nj
samples to estimate the covariance between some predictor
and the response variable. Furthermore, if we only use sam-
ples with complete observations, using a similar proof, we can
show that ‖�̃ − �‖max = Op(

√
(log p)/ncomplete) and ‖C̃ −

C‖max = Op(
√

(log p)/ncomplete), where ncomplete is the number
of samples with complete observations. For the block-missing
multimodality data, since ncomplete can be much smaller than
minj,t njt and minj nj, Theorem 1 indicates that the first step of
our proposed DISCOM method can make full use of all available
information. Based on the results shown in Theorem 1, we will
show the convergence rate of ‖β̃ − β0‖2.

Theorem 2. Under conditions (A1) and (A2), let 1 − α1 =
O(

√
(log p)/ minj nj) and 1 − α2 = O(

√
(log p)/ minj,t njt).

If s
√

(log p)/ minj,t njt = o(1) and we choose λ = 2‖C̃ −
�̂β0‖max, then we have ‖β̃ − β0‖2 = Op(

√
sλ) = Op(‖β0‖1√

s(log p)/ minj,t njt).

Remark 2. As shown in the above Theorem 2, we have ‖β̃ −
β0‖2 = Op(

√
s‖C̃ − �̂β0‖max). If we assume that (a) there is no

missing data, (b) the predictors are generated from a multivari-
ate Gaussian distribution, and (c) the true model is Y = Xβ0+ε,
where ε ∼ N(0, σ 2In). Then we will use �̂ = XTX/n and
C̃ = XTY/n to estimate � and C, respectively. Therefore, we
have ‖C̃ − �̂β0‖max = ‖XTε/n‖max = Op(

√
(log p)/n), and

‖β̃ − β0‖2 = Op(
√

(s log p)/n), which is the minimax �2-norm
rate as shown in Raskutti et al. (2011). Since the complete data
generated from the Gaussian random design can be viewed as
a special type of block-missing multimodality data, the error
bound in Theorem 2 is sharp.

On the other hand, if the true relationship between the
conditional expectation E(y|X1, X2, . . . , Xp) and the predictors
is nonlinear, we have C̃ − �̂β0 �= XTε/n and ‖C̃ −
�̂β0‖max = Op(‖β0‖1

√
(log p)/n) as shown in the proof.

In this case, if we still use the Lasso method to estimate
the regression coefficients β0 in the optimal linear predictor,
we have ‖β̃Lasso − β0‖2 = Op(‖β0‖1

√
s(log p)/n). For the

blocking missing multimodality data, since the Lasso method
can only use the data with complete observations, we have
‖β̃Lasso − β0‖2 = Op(‖β0‖1

√
s(log p)/ncomplete). However,

as shown in Theorem 2, for our proposed DISCOM estimate
β̃ , we have ‖β̃ − β0‖2 = Op(‖β0‖1

√
s(log p)/ minj,t njt).

In practice, the minimum number of samples with available
observations from two modalities (minj,t njt) can be much larger
than the number of samples with complete observations from
all modalities (ncomplete). Theorem 2 indicates that DISCOM
could make use of the block-missing multimodality data more
effectively than the Lasso method using only the complete
data.

In Theorem 2, the assumption s
√

(log p)/ minj,t njt = o(1)

is used to guarantee that �̂ satisfies the RE condition with a
high probability if the true covariance matrix � satisfies the RE
condition (A2). Note that many existing sparse linear regression
studies focus on the fixed design where the design matrix X
is considered to be fixed and complete. In that case, �̂ =
XTX/n is assumed to satisfy the RE condition directly. For the
general random design, Van De Geer and Bühlmann (2009)
showed that �̂ = XTX/n satisfies the RE condition as long
as the true covariance matrix � satisfies the RE condition and
s2 log p/n = o(1). For the special Gaussian random design, by
a global analysis of the full random matrix �̂ = XTX/n rather
than a local analysis looking at individual entries of �̂, Raskutti
et al. (2010) shows that the matrix �̂ satisfies the RE condition
with a high probability if the true covariance matrix of the multi-
variate Gaussian distribution satisfies the RE condition and n >

Constant · s log p. In our article, since we consider the general
random design including both sub-Gaussian distributions and
heavy-tailed distributions, and study the proposed estimated
covariance matrix �̂ where �̂ �= XTX/n in most cases, we
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use the condition s
√

(log p)/ minj,t njt = o(1) to guarantee
that the RE condition is satisfied with a high probability. This
condition is very similar to the condition s2 log p/n = o(1)

used in Van De Geer and Bühlmann (2009) for the complete
data.

For the general random design and the block-missing
multimodality data, it is difficult to develop a weak condition
(e.g., s log p/ minj,t njt = o(1)) using a similar global analysis
of the full random matrix �̂ as shown in Raskutti et al. (2010).
Instead of using the condition s

√
(log p)/ minj,t njt = o(1), we

can use the following weak condition
min

j,t
njt > (128ν′

1/m)2(s2 log p),

where ν′
1 > ν1 is a positive constant. This condition is also used

in some existing studies about random designs (Bühlmann and
van der Geer 2011; Zhou et al. 2009).

3.2. Heavy-Tailed Case

In this section, we consider the heavy-tailed case. Instead
of assuming that the distributions of the predictors and the
response variable have exponential tails, we consider the
following moment condition.

(A3) Suppose that max1≤j≤p E(X4
j ) ≤ Q2

1/48 and E(y4) ≤ Q2
2,

where Q1 and Q2 are two positive constants.

Condition (A3) assumes that the fourth moments of all pre-
dictors Xj’s and the response variable y are bounded. Under
condition (A3), the tails of the distributions of Xj’s and y may
not be exponentially bounded. In the literature on Lasso, most
studies consider the fixed design (Meinshausen and Bühlmann
2006; Zhao and Yu 2006; Zou 2006) and the noise is usually
assumed to be Gaussian (Meinshausen and Bühlmann 2006;
Zhang and Huang 2008), or admits exponentially bounded tail
(Bunea 2008; Meinshausen and Yu 2009). In this study, we
consider a random design case and relax the distribution of Xj’s
and y to have finite fourth moments.

Next, we discuss the theoretical properties of Huber’s M-
estimators �̆ and C̆. Based on the convergence rates of ‖�̆ −
�‖max and ‖C̆ − C‖max, we will show the convergence rate of
‖β̆ − β0‖2.

Theorem 3. Under condition (A3), let Hjt = Q1
12

√
njt/ log p for

each j, t ∈ {1, 2, . . . , p}, if minj,t njt ≥ 24 log p, we have

max
j,t

P

(
|σ̆jt − σjt| ≥ Q1

√
log p
njt

)
≤ 2

p3 ,

P

(
‖�̆ − �‖max ≥ Q1

√
log p

minj,t njt

)
≤ 2

p
.

In addition, let Hj = (Q1 + Q2)
√

nj/ log p for each j ∈
{1, 2, . . . , p}, we have

max
j

P

(
|c̆j − cj| ≥ 8(Q1 + Q2)

√
log p

nj

)
≤ 2

p2 ,

P

(
‖C̆ − C‖max ≥ 8(Q1 + Q2)

√
log p

minj nj

)
≤ 2

p
.

Remark 3. If we assume that (log p)/ minj,t njt = o(1),
the condition minj,t njt > 24 log p is satisfied if the sample
size minj,t njt is sufficiently large. Therefore, we have ‖�̆ −
�‖max = Op(

√
(log p)/ minj,t njt) and ‖C̆ − C‖max =

Op(
√

(log p)/ minj nj). This indicates that Huber’s M-estimators
for the heavy-tailed case acquire the same convergence rate
as the sample covariance estimates for the sub-Gaussian case.
However, as shown in the next theorem, if the distributions of
the predictors Xj’s and the response variable y are not assumed to
have exponentially bounded tails, the large deviation bounds of
�̃ and C̃ can be wider than the bounds of Huber’s M-estimators
�̆ and C̆, respectively.

Theorem 4. Suppose max1≤j≤p E(X4�
j ) ≤ T and E(y4�) ≤ T,

where T > 0, � > 1 are two constants. Then we have

max
j,t

P

(
|σ̃jt − σjt| ≥ d1

2T

√
p

njt

)
≤ d2

p2h ,

P

(
‖�̃ − �‖max ≥ d1

2T

√
p

minj,t njt

)
≤ d2

p2h−2 ,

where d1 > 0, d2 > 0, h ∈ (1, �) are some constants.
Furthermore,

max
j

P

(
|c̃j − cj| ≥ d3

2T

√
p
nj

)
≤ d4

p2h−1 ,

P

(
‖C̃ − C‖max ≥ d3

2T

√
p

minj nj

)
≤ d4

p2h−2 ,

where d3 > 0 and d4 > 0 are two constants.

Remark 4. Under the moment condition, Theorem 4 shows
that ‖�̃ − �‖max = Op(

√
p/ minj,t njt) and ‖C̃ − C‖max =

Op(
√

p/ minj nj). According to Proposition 6.2 in Catoni
(2012), the bounds shown in Theorem 4 are actually tight. If
the dimension p is very large, the large deviation bounds of
‖�̃ − �‖max and ‖C̃ − C‖max can be much larger than the
bounds of ‖�̆ − �‖max and ‖C̆ − C‖max, respectively. This
necessitates the usage of a robust estimator.

In the next theorem, based on the large deviation bounds of
‖�̆ − �‖max and ‖C̆ − C‖max, we show the convergence rate of
‖β̆ − β0‖2.

Theorem 5. Under conditions (A2) and (A3), let 1 − α1 =
O(

√
(log p)/ minj nj), 1 − α2 = O(

√
(log p)/ minj,t njt),

Hjt = Q1
12

√
njt/ log p and Hj = (Q1 + Q2)

√
nj/ log p. If

s
√

(log p)/ minj,t njt = o(1) and let λ = 2‖C̆ − �̂β0‖max,
then we have ‖β̆ − β0‖2 = Op(

√
sλ) = Op(‖β0‖1√

s(log p)/ minj,t njt).

Remark 5. Instead of using the condition s
√

(log p)/ minj,t njt =
o(1), we can assume that

min
j,t

njt > (128Q′
1/m)2(s2 log p),

where Q′
1 > Q1 is a positive constant. Theorem 5 indicates that

for the heavy-tailed case, under (A3), the convergence rate of
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‖β̆ − β0‖2 is also Op(‖β0‖1
√

(s log p)/ minj,t njt), which is the
same as the rate shown in Theorem 2 under the sub-Gaussian
assumption. However, as shown in our simulation study, if the
response variable and the predictors follow sub-Gaussian distri-
butions, DISCOM using standard estimates �̃ and C̃ generally
has better finite sample performance than the method using
robust estimates �̆ and C̆.

Remark 6. If we assume that p is fixed, for the sub-Gaussian
case considered in Section 3.1, we can show that ‖�̃ −�‖max =
Op((minj,t njt)−1/2) and ‖C̃ − C‖max = Op((minj nj)−1/2)
according to Lemma 1 in Ravikumar et al. (2011) and a
very similar proof of Theorem 1. For the heavy-tailed case
considered in Section 3.2, if we assume that p is fixed, we
can also show that ‖�̆ − �‖max = Op((minj,t njt)−1/2) and
‖C̆ − C‖max = Op((minj nj)−1/2) according to Theorem 5
in Fan et al. (2017) and a very similar proof of Theorem 3.
Then, using the same proof of Theorem 2, we can also show
that ‖β̃ − β0‖2 = Op(

√
sλ) = Op(

√
s‖C̃ − �̂β0‖max).

Since ‖�̃ − �‖max = Op((minj,t njt)−1/2), ‖C̃ − C‖max =
Op((minj nj)−1/2), and p is fixed, we can further show that
‖β̃ − β0‖2 = Op(β0

max(minj,t njt)−1/2). Similarly, for the
heavy-tailed case, we can also show that ‖β̆ − β0‖2 =
Op(β0

max(minj,t njt)−1/2). Therefore, the convergence rate of the
estimation error in the classical fixed p setting is faster than the
rate in the high dimensional setting where p grows to infinity.

3.3. Model Selection Consistency

In this section, we show that our proposed DISCOM method is
model selection consistent. The following condition is consid-
ered.

(A4) ‖�JcJ�
−1
JJ ‖∞ ≤ 1 − η, where η ∈ (0, 1) is a constant,

�JcJ is the sub-matrix of � with row indices in the set Jc and
column indices in the set J, and �JJ is the sub-matrix of �

with both row and column indices in the set J.

Condition (A4) can be viewed as a population version of the
strong irrepresentable condition proposed in Zhao and Yu
(2006). In the following Theorem 6 and Theorem 7, we will
show that our proposed DISCOM method is model selection
consistent for the sub-Gaussian case and the heavy-tailed case,
respectively.

Theorem 6. Under Conditions (A1) and (A4), let 1 − α1 =
O(

√
(log p)/ minj nj) and 1 − α2 = O(

√
(log p)/ minj,t njt). If

‖(�JJ)−1‖∞ ·
√

s2 log p
minj,t njt

−→ 0, and

1 + sβ0
max

λ

√
log p

minj,t njt
−→ 0,

λ · ‖(�JJ)−1‖∞
β0

min
−→ 0,

then there exists a solution β̃ to (4) such that P(sign(β̃) =
sign(β0)) −→ 1, as minjt njt → ∞ and p → ∞.

Remark 7. Note that the condition ‖(�JJ)−1‖∞·√
(s2 log p)/ minj,t njt = o(1) is used to guarantee that (a)

‖(�̂JJ)−1‖∞ ≤ Constant · ‖(�JJ)−1‖∞ and (b) ‖�̂JcJ�̂
−1
JJ ‖∞ ≤

1 − η′ if ‖�JcJ�
−1
JJ ‖∞ ≤ 1 − η for the general random design

with a high probability, where η′ ∈ (0, 1) and η ∈ (0, 1)

are two constants. For the fixed design, we do not need this
condition. For the special Gaussian random design, as shown
in Wainwright (2009), using some concentration inequalities
about the normal distribution and the fact that �̂ = XTX/n for
the complete data, we can obtain model selection consistency
with n > Constant · s log(p − s). In our theoretical studies,
since we consider the general random design including both
sub-Gaussian distributions and heavy-tailed distributions, and
�̂ �= XTX/n for the block-missing multi-modality data, we use
the condition ‖(�JJ)−1‖∞ ·

√
(s2 log p)/ minj,t njt = o(1) to

guarantee that (a) and (b) are satisfied. Note that this condition
was also used in some existing model selection consistency
studies for random designs (Jeng and Daye 2011; Datta et al.
2017).

As shown in the proof of Theorem 6, to guarantee that
(a) and (b) are satisfied, instead of requiring ‖(�JJ)−1‖∞ ·√

(s2 log p)/ minj,t njt = o(1), we can use the following weak
condition

‖(�JJ)
−1‖∞ ·

√
s2 log p

minj,t njt
≤ η

ν′
1(4 + η)

,

where ν′
1 > ν1 is a positive constant.

Theorem 7. Under conditions (A3) and (A4), let Hjt =
Q1
12

√
njt/ log p, Hj = (Q1 + Q2)

√
nj/ log p, 1 − α1 =

O(
√

(log p)/ minj nj), 1 − α2 = O(
√

(log p)/ minj,t njt). If
‖(�JJ)−1‖∞ ·

√
(s2 log p)/ minj,t njt −→ 0, and

1 + sβ0
max

λ

√
log p

minj,t njt
−→ 0,

λ · ‖(�JJ)−1‖∞
β0

min
−→ 0,

then there exists a solution β̆ to (4) such that P(sign(β̆) =
sign(β0)) −→ 1, as minjt njt → ∞ and p → ∞.

Remark 8. Instead of requiring ‖(�JJ)−1‖∞·√
(s2 log p)/ minj,t njt = o(1), we can use the following weak

condition

‖(�JJ)
−1‖∞ ·

√
s2 log p

minj,t njt
≤ η

Q′
1(4 + η)

,

where Q′
1 > Q1 is a positive constant. The proof of Theorem 7 is

very similar to the proof of Theorem 6. We only show the proof
of Theorem 7 briefly in the Appendix.

4. Simulation Study

In this section, we perform numerical studies using simulated
examples. We use DISCOM and DISCOM-Huber to denote
our proposed methods using sample covariance estimates
and Huber’s M-estimates, respectively. The proposed methods
using the fast tuning parameter selection method shown in
Section 2.4 are called Fast-DISCOM and Fast-DISCOM-Huber,
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respectively. For each example, we compare our proposed
methods with (1) Lasso: Lasso method which only uses the
samples with complete observations; (2) Imputed-Lasso: Lasso
method which uses all samples with missing data imputed by
the Soft-thresholded SVD method (Mazumder et al. 2010);
(3) Ridge: Ridge regression method which only uses the
samples with complete observations; (4) Imputed-Ridge: Ridge
regression method which uses all samples with missing data
imputed by the Soft-thresholded SVD method; and (5) IMSF
(Yuan et al. 2012): the IMSF method which uses all available data
without imputing the missing data. We study four simulated
examples, where the data are generated from the Gaussian
distribution or some heavy-tailed distributions.

For each example, the data are generated from three modal-
ities and each modality has 100 predictors. The training dataset
is composed of 100 samples with complete observations, 100
samples with observations from the first and the second modal-
ities, 100 samples with observations from the first and the
third modalities, and 100 samples with observations only from
the first modality. The tuning dataset contains 200 samples
with complete observations and the testing dataset contains
400 samples with complete observations. All methods use the
tuning dataset to choose the best tuning parameters. For the
four simulated examples, samples with complete observations
are generated from the linear model as follows.

Example 1: The predictors (xi1, xi2, . . . , xip)T ∼ N(0, �) with
σjt = 0.6|j−t|. The true coefficient vector

β0 = (0.5, 0.5, 0.5, 0, · · · , 0︸ ︷︷ ︸
97

, 0.5, 0.5, 0.5, 0, · · · , 0︸ ︷︷ ︸
97

,

0.5, 0.5, 0.5, 0, · · · , 0︸ ︷︷ ︸
97

).

The true model is Y = Xβ0 + ε, where the errors
ε1, ε2, . . . , εn

iid∼ N(0, 1).
Example 2: The predictors (xi1, xi2, . . . , xip)T ∼ N(0, �),

where � is a block diagonal matrix with p/5 blocks. Each
block is a 5×5 square matrix with ones on the main diagonal
and 0.15 elsewhere. The true coefficient vector

β0 = (0.5, · · · , 0.5︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
95

, 0.5, · · · , 0.5︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
95

,

0.5, · · · , 0.5︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
95

).

The true model is Y = Xβ0 + ε, where the errors
ε1, ε2, . . . , εn

i.i.d∼ N(0, 1).
Example 3: The predictors (xi1, xi2, . . . , xip)T ∼ t5(0, 0.6�),

where � is the same as the covariance matrix shown in Exam-
ple 1. For this multivariate t-distribution with the degrees of
freedom 5, the variances of all predictors are equal to 1. The
true coefficient vector β0 is the same as the vector shown in
Example 1. The true model is Y = Xβ0 + ε, where the errors
ε1, ε2, . . . , εn follow the Student’s t-distribution with degrees
of freedom 10.

Example 4: The predictors (xi1, . . . , xip)T ∼ the mixture distri-
bution ρ · N(0, 10I) + (1 − ρ) · N(0, 0.5I), where ρ = 0.03
and I is a p × p identity matrix. The true coefficient vector

β0 is the same as the vector shown in Example 1. The true
model is Y = Xβ0 + ε, where the errors ε1, ε2, . . . , εn follow
the Skew-t distribution (Azzalini and Capitanio 2013) with
degrees of freedom 4.

For each example, we repeated the simulation 30 times. To
evaluate different methods, we use the following five measures:
�2 distance ‖β̂−β0‖2, mean squared error (MSE), false-positive
rate (FPR), false-negative rate (FNR), and the elapsed time
(in seconds) using R. Tables 1 and 2 show the performance
comparison of different methods in the Gaussian case and the
heavy-tailed case, respectively. The results indicate that our
proposed methods deliver the best performance on all these four
examples. For the Gaussian case shown in Table 1, DISCOM
delivers better performance than the DISCOM-Huber method.
For the heavy-tailed case shown in Table 2, DISCOM-Huber
performs better. These numerical results are consistent with our
theoretical studies shown in Section 3.

In addition, as shown in Tables 1 and 2, for the Lasso and
ridge regression, using the imputed data can improve perfor-
mance in most cases. However, as shown in Table 1, the Lasso
method using the imputed data may deliver worse estimate
of the true coefficient vector β0, possibly due to the block-
missing pattern. Compared with the Lasso and Ridge regres-
sion methods using the imputed dataset or only the samples
with complete observations, the IMSF method delivers better
estimation and prediction. On the other hand, IMSF method
has high false-positive rates for all four simulated examples.
The comparison between IMSF and our proposed DISCOM and
DISCOM-Huber shows that our proposed methods could use
all available data more effectively and therefore acquires better
performance.

For each simulation of the four examples, our proposed
Fast-DISCOM method using the fast tuning parameter selec-
tion method uses only 4 seconds while our original DISCOM
method uses about 13 s. The Fast-DISCOM method is also
faster than the IMSF method which uses about 7 seconds for
each simulation. On the other hand, we can observe that the
computing times of our original DISCOM and DISCOM-Huber
methods are still acceptable. For Examples 1 and 2 generated
from the Gaussian distribution, although the Fast-DISCOM
method does not perform as well as the DISCOM method, it has
better estimation, prediction, and model selection performance
than the Lasso, ridge regression and IMSF methods. Similarly,
for Examples 3 and 4 generated from the heavy-tailed distri-
butions, although the Fast-DISCOM-Huber method does not
perform as well as the DISCOM-Huber method, it also has
better performance than the Lasso, ridge regression and IMSF
methods. These simulation results indicate that our proposed
new tuning parameter selection method accelerates the com-
putational speed without sacrificing the estimation, prediction,
and model selection performance too much.

5. Real Data Analysis

In this section, we show the analysis of Alzheimer’s Disease
Neuroimaging Initiative (ADNI) data as an application exam-
ple. The main goal of ADNI is to test whether serial mag-
netic resonance imaging (MRI), positron emission tomography



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1415

Table 1. Performance comparison for the Gaussian case.

Example 1 Example 2

Methods ‖β̂ − β0‖2 MSE FPR FNR TIME ‖β̂ − β0‖2 MSE FPR FNR TIME

Lasso 0.655 1.431 0.069 0.015 0.016 0.920 1.988 0.133 0.002 0.019
(0.026) (0.045) (0.004) (0.009) (0.000) (0.025) (0.059) (0.007) (0.002) (0.004)

Imputed-Lasso 0.674 1.338 0.076 0.004 0.802 0.690 1.546 0.122 0.000 1.099
(0.017) (0.018) (0.007) (0.004) (0.006) (0.013) (0.030) (0.007) (0.000) (0.008)

Ridge 1.270 3.962 1.000 0.000 0.025 1.662 5.262 1.000 0.000 0.025
(0.004) (0.062) (0.000) (0.000) (0.000) (0.006) (0.066) (0.000) (0.000) (0.000)

Imputed-Ridge 1.094 2.304 1.000 0.000 0.780 1.332 3.130 1.000 0.000 1.093
(0.013) (0.035) (0.000) (0.000) (0.006) (0.009) (0.048) (0.000) (0.000) (0.008)

IMSF 0.585 1.358 0.173 0.000 5.554 0.777 1.730 0.291 0.000 5.900
(0.020) (0.037) (0.009) (0.000) (0.068) (0.016) (0.040) (0.012) (0.000) (0.075)

DISCOM 0.416 1.133 0.025 0.000 13.552 0.600 1.378 0.074 0.000 12.391
(0.013) (0.016) (0.003) (0.000) (0.078) (0.020) (0.033) (0.007) (0.000) (0.064)

DISCOM-Huber 0.434 1.145 0.026 0.000 28.618 0.605 1.380 0.076 0.000 25.907
(0.013) (0.016) (0.003) (0.000) (0.886) (0.021) (0.035) (0.008) (0.000) 0.122

Fast-DISCOM 0.465 1.160 0.039 0.000 3.600 0.641 1.438 0.109 0.000 3.241
(0.015) (0.016) (0.005) (0.000) (0.027) (0.017) (0.033) (0.006) (0.000) (0.029)

Fast-DISCOM-
Huber

0.481 1.173 0.036 0.000 16.802 0.655 1.457 0.100 0.000 16.767
(0.015) (0.016) (0.004) (0.000) (0.081) (0.020) (0.037) (0.007) (0.000) (0.096)

Note: The values in the parentheses are the standard errors of the measures.

Table 2. Performance comparison for the heavy-tailed case.

Example 3 Example 4

Methods ‖β̂ − β0‖2 MSE FPR FNR TIME ‖β̂ − β0‖2 MSE FPR FNR TIME

Lasso 0.751 1.809 0.070 0.056 0.021 1.305 3.331 0.064 0.419 0.020
(0.036) (0.055) (0.006) (0.017) (0.004) (0.029) (0.087) (0.007) (0.054) (0.005)

Imputed-Lasso 0.751 1.669 0.071 0.026 0.687 0.930 2.699 0.147 0.033 0.530
(0.023) (0.039) (0.008) (0.010) (0.010) (0.030) (0.073) (0.014) (0.016) (0.013)

Ridge 1.294 4.454 1.000 0.000 0.028 1.420 3.548 1.000 0.000 0.039
(0.004) (0.114) (0.000) (0.000) (0.003) (0.006) (0.069) (0.000) (0.000) (0.006)

Imputed-Ridge 1.143 2.731 1.000 0.000 0.657 1.326 3.342 1.000 0.000 0.527
(0.013) (0.064) (0.000) (0.000) (0.010) (0.011) (0.080) (0.000) (0.000) (0.011)

IMSF 0.622 1.637 0.173 0.004 6.569 1.048 2.878 0.189 0.052 6.989
(0.025) (0.041) (0.013) (0.004) (0.297) (0.028) (0.083) (0.012) (0.017) (0.188)

DISCOM 0.579 1.560 0.037 0.004 12.086 0.871 2.590 0.193 0.011 12.362
(0.022) (0.038) (0.004) (0.004) (0.134) (0.025) (0.067) (0.017) (0.006) (0.153)

DISCOM-Huber 0.507 1.452 0.027 0.000 26.073 0.780 2.468 0.137 0.004 26.925
(0.017) (0.025) (0.003) (0.000) (0.104) (0.021) (0.054) (0.012) (0.004) (0.228)

Fast-DISCOM 0.601 1.604 0.040 0.004 3.317 1.151 3.028 0.207 0.085 3.626
(0.022) (0.047) (0.004) (0.004) (0.041) (0.025) (0.079) (0.019) (0.033) (0.050)

Fast-DISCOM-
Huber

0.561 1.496 0.035 0.000 17.835 0.786 2.482 0.137 0.000 17.042
(0.021) (0.031) (0.004) (0.000) (0.079) (0.022) (0.055) (0.013) (0.000) (0.134)

[Note: The values in the parentheses are the standard errors of the measures.]

(PET), and some other biological markers and neuropsycholog-
ical assessments can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). In our study, we extracted features from three modalities:
structural MRI, fluorodeoxyglucose PET, and CerebroSpinal
Fluid (CSF). Imaging preprocessing was performed for MRI

and PET images. For the MRI, after some correction, spatial
segmentation, and registration steps, we obtained the subject
lableled image based on the Jacob template (Kabani et al. 1998)
with 93 manually labeled regions of interest (ROI). For each of
the 93 ROIs in the labeled MRI, we computed the volume of gray
matter as a feature. For each PET image, we first aligned the PET
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Table 3. Performance comparison for the ADNI data.

MSE Number of Features TIME

Methods Mean SE Mean SE Mean SE

Lasso 5.711 0.341 11.733 1.638 0.009 0.002
Imputed-Lasso 4.711 0.082 86.700 8.559 0.559 0.017
Ridge 5.273 0.204 191.000 0.000 0.010 0.000
Imputed-Ridge 4.478 0.055 191.000 0.000 0.177 0.006
IMSF 4.630 0.079 28.400 3.025 2.960 0.073
DISCOM 4.285 0.068 27.933 2.261 4.675 0.028
DISCOM-Huber 4.161 0.059 23.100 0.846 10.348 0.025
Fast-DISCOM 4.146 0.055 28.100 0.809 1.565 0.007
Fast-DISCOM-Huber 4.123 0.069 25.833 1.311 8.012 0.019
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Figure 2. Selection frequency of 191 features for the prediction of MMSE score.

image to its respective MRI using affine registration. Then, we
calculated the average intensity of every ROI in the PET image
as a feature. Therefore, for each ROI, we have one MRI feature
and one PET feature. For the CSF modality, five biomarkers
were used in this study, namely amyloid β (Aβ42), CSF total
tau (t-tau), tau hyperphosphorylated at threonine 181 (p-tau),
and two tau ratios with respective to Aβ42 (i.e., t-tau/Aβ42 and
p-tau/Aβ42).

After data processing, we got 93 features from MRI, 93 fea-
tures from PET, and 5 features from CSF. There are 805 subjects
in total, including (1) 199 subjects with complete MRI, PET, and
CSF features, (2) 197 subjects with only MRI and PET features,
(3) 201 subjects with only MRI and CSF features, and (4) 208
subjects with only MRI features. The response variable used
in our study is the Mini Mental State Examination (MMSE)
score. As a brief 30-point questionnaire test, MMSE can be
used to examine a patient’s arithmetic, memory and orientation

(Folstein et al. 1975). It is very useful to help evaluate the stage
of AD pathology and predict future progression. We will use all
available data from MRI, PET, and CSF to predict the MMSE
score.

In our analysis, we divided the data into three parts: training
dataset, tuning dataset, and testing dataset. The training dataset
consists of all subjects with incomplete observations and 40
randomly selected subjects with complete MRI, PET, and CSF
features. The tuning dataset consists of another 40 randomly
selected subjects (different from the training dataset) with com-
plete observations. The testing dataset contains the other 119
subjects with complete observations. The tuning dataset was
used to choose the best tuning parameters for all methods and
the testing dataset was used to evaluate different methods. We
used all methods shown in the simulation study to predict the
MMSE score. For each method, the analysis was repeated 30
times using different partitions of the data.
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Figure 3. The multi-slice view of the brain regions always selected by DISCOM-Huber and Fast-DISCOM-Huber.

The results in Table 3 show that our proposed Fast-DISCOM-
Huber method acquires the best prediction performance. All
our proposed DISCOM methods deliver better performance
than the Lasso, Ridge, and IMSF methods. The IMSF method
has better prediction performance than the Lasso and ridge
regression using only samples with complete observations.
However, IMSF does not perform as well as the ridge regression
using the imputed data. Regarding the model selection, since
the number of variables selected by the Lasso is at most the
sample size (Zou and Hastie 2005), as shown in Table 3, the
Lasso method using the imputed data selected many more
features than the method using only samples with complete
observations. Both IMSF and our proposed methods could
deliver a model with relatively small numbers of features.

Figure 2 shows the selection frequency of all the 191 features.
The selection frequency of each feature is defined as the times of
being selected in the 30 times replications. As shown in Figure 2,
for our proposed DISCOM methods, some features were always
selected and many features were never selected in the 30 times
replications. This means that our method could deliver relatively
robust performance on model selection. However, for some
other methods such as the Imputed-Lasso method, they selected
very different features in different replications and therefore
many features have positive and low selection frequencies. For
the Imputed-Lasso method, one possible reason for the unsta-

ble performance on model selection is due to the randomness
involved in the imputation of a lot of block-missing data.

To further understand our results, since each MRI feature
and each PET feature are corresponding to one ROI, we
can examine whether the selected features are meaningful by
studying their corresponding brain regions. In our 30 times
of experiments using different random splits, there are 9 MRI
features and 2 PET features always selected by our proposed
DISCOM-Huber and Fast-DISCOM-Huber methods. Figure 3
shows the multi-slice view of the brain regions (regions with
color) corresponding to these 11 features. Among these 11 brain
regions, some regions such as hippocampal formation right
(30th region), uncus left (46th region), middle temporal gyrus
left (48th region), hippocampus formation left (69th region) and
amygdale right (83th region), are known to be highly correlated
with AD and MCI by many studies using group comparison
methods (Misra et al. 2009; Zhang and Shen 2012). It would be
interesting to study whether the other six always selected brain
regions are truly related with AD by some scientific experiments.

In addition, as shown in Table 3, all our proposed DISCOM
methods solve this real data analysis problem with 191 fea-
tures within 11 seconds. This indicates that the time cost of
our methods is not very expensive. In summary, our real data
analysis indicates that our proposed method can solve practical
problems well.
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6. Conclusion

In this paper, we propose a new two-step procedure to find
the optimal linear prediction of a continuous response variable
using the block-missing multimodality predictors. In the first
step, we estimate the covariance matrix of the predictors using
a linear combination of the identity matrix, and the estimates
of the intra-modality covariance matrix and the cross-modality
covariance matrix. The proposed estimator of the covariance
matrix can be positive semidefinite and more accurate than the
sample covariance matrix. We also use all available information
to estimate the cross covariance vector between the predictors
and the response variable. Robust estimate based on Huber’s
M-estimate is also proposed for the heavy-tailed case. In the
second step, based on the estimated covariance matrix and
the cross-covariance vector, a modified Lasso estimator is used
to deliver a sparse estimate of the coefficients in the optimal
linear prediction. The effectiveness of the proposed method is
demonstrated by both theoretical and numerical studies. The
comparison between our proposed method and several existing
ones also indicates that our method has promising performance
on estimation, prediction, and model selection for the block-
missing multimodality data.
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